中文字幕精品一区二区精品-国产精品女人在线观看-成年免费大片黄在线观看岛国-亚洲欧美日韩一区成人

沉淀強化鎳基高溫合金
2016-02-24
  • 高溫合金


高溫合金分為三類材料:760℃高溫材料、1200℃高溫材料和1500℃高溫材料,抗拉強度800MPa?;蛘哒f是指在760--1500℃以上及一定應力條件下長期工作的高溫金屬材料,具有優異的高溫強度,良好的抗氧化和抗熱腐蝕性能,良好的疲勞性能、斷裂韌性等綜合性能,已成為軍民用燃氣渦輪發動機熱端部件不可替代的關鍵材料。

  • 中文名

  • 高溫合金

  • 分????類

  • 760℃、1200℃和1500℃高溫材料

  • 應????用

  • 軍民用燃氣渦輪發動機

  • 性????質

  • 抗氧化和抗熱腐蝕性能



簡介按照現有的理論,760℃高溫材料按基體元素主要可分為鐵基高溫合金、鎳基高溫合金和鈷基高溫合金。按制備工藝可分為變形高溫合金、鑄造高溫合金和粉末冶金高溫合金。按強化方式有固溶強化型、沉淀強化型、氧化物彌散強化型和纖維強化型等。高溫合金主要用于制造航空、艦艇和工業用燃氣輪機的渦輪葉片、導向葉片、渦輪盤、高壓壓氣機盤和燃燒室等高溫部件,還用于制造航天飛行器、火箭發動機、核反應堆、石油化工設備以及煤的轉化等能源轉換裝置。

發展

760℃高溫材料發展過程從20世紀30年代后期起,英、、美等國就開始研究高溫合金。第二次世界大戰期間,為了滿足新型航空發動機的需要,高溫合金的研究和使用進入了蓬勃發展時期。40年代初,英國首先在80Ni-20Cr合金中加入少量鋁和鈦,形成γ‘相(gamma prime)以進行強化,研制成第一種具有較高的高溫強度的鎳基合金。同一時期,美國為了適應活塞式航空發動機用渦輪增壓器發展的需要,開始用Vitallium鈷基合金制作葉片。

此外,美國還研制出Inconel鎳基合金,用以制作噴氣發動機的燃燒室。以后,冶金學家為進一步提高合金的高溫強度,在鎳基合金中加入鎢、鉬、鈷等元素,增加、鈦含量,研制出一系列牌號的合金,如英國的“Nimonic”,美國的“Mar-M”和“IN”等;在鈷基合金中,加入鎳、鎢等元素,發展出多種高溫合金,如X-45、HA-188、FSX-414等。由于鈷資源缺乏,鈷基高溫合金發展受到限制。

40年代,鐵基高溫合金也得到了發展,50年代出現A-286和Incoloy901等牌號,但因高溫穩定性較差,從60年代以來發展較慢。蘇聯于1950年前后開始生產“ЭИ”牌號的鎳基高溫合金,后來生產“ЭП”系列變形高溫合金和ЖС系列鑄造高溫合金。中國從1956年開始試制高溫合金,逐漸形成“GH”系列的變形高溫合金和“K”系列的鑄造高溫合金。70年代美國還采用新的生產工藝制造出定向結晶葉片和粉末冶金渦輪盤,研制出單晶葉片等高溫合金部件,以適應航空發動機渦輪進口溫度不斷提高的需要。

類別編輯

760℃高溫材料變形高溫合金

變形高溫合金是指可以進行熱、冷變形加工,工作溫度范圍-253~1320℃,具有良好的力學性能和綜合的強、韌性指標,具有較高的抗氧化、抗腐蝕性能的一類合金。按其熱處理工藝可分為固溶強化型合金和時效強化型合金。GH后第一位數字表示分類號即1、固溶強化型鐵基合金 2、時效硬化型鐵基合金 3、固溶強化型鎳基合金 4、鈷基合金 GH后,二,三,四位數字表示順序號。

1、固溶強化型合金

使用溫度范圍為900~1300℃,**抗氧化溫度達1320℃。例如GH128合金,室溫拉伸強度為850MPa、屈服強度為350MPa;1000℃拉伸強度為140MPa、延伸率為85%,1000℃、30MPa應力的持久壽命為200小時、延伸率40%。固溶合金一般用于制作航空、航天發動機燃燒室、機匣等部件。

2、時效強化型合金

使用溫度為-253~950℃,一般用于制作航空、航天發動機的渦輪盤與葉片等結構件。制作渦輪盤的合金工作溫度為-253~700℃,要求具有良好的高低溫強度和抗疲勞性能。例如:GH4169合金,在650℃的**屈服強度達1000MPa;制作葉片的合金溫度可達950℃,例如:GH220合金,950℃的拉伸強度為490MPa,940℃、200MPa的持久壽命大于40小時。

變形高溫合金主要為航天、航空、核能、石油民用工業提供結構鍛件、餅材、環件、棒材、板材、管材、帶材和絲材。[1]?

760℃800MPa級高溫材料鑄造高溫合金

鑄造高溫合金是指可以或只能用鑄造方法成型零件的一類高溫合金。其主要特點是:

1.具有更寬的成分范圍由于可不必兼顧其變形加工性能,合金的設計可以集中考慮優化其使用性能。如對于鎳基高溫合金,可通過調整成分使γ’含量達60%或更高,從而在高達合金熔點85%的溫度下,合金仍能保持優良性能。

2.具有更廣闊的應用領域由于鑄造方法具有的特殊優點,可根據零件的使用需要,設計、制造出近終形或無余量的具有任意復雜結構和形狀的高溫合金鑄件。

根據鑄造合金的使用溫度,可以分為以下三類:

第一類:在-253~650℃使用的等軸晶鑄造高溫合金這類合金在很大的范圍溫度內具有良好的綜合性能,特別是在低溫下能保持強度和塑性均不下降。如在航空、航天發動機上用量較大的K4169合金,其650℃拉伸強度為1000MPa、屈服強度850MPa、拉伸塑性15%;650℃,620MPa應力下的持久壽命為200小時。已用于制作航空發動機中的擴壓器機匣及航天發動機中各種泵用復雜結構件等。

第二類:在650~950℃使用的等軸晶鑄造高溫合金這類合金在高溫下有較高的力學性能及抗熱腐蝕性能。例如K419合金,950℃時,拉伸強度大于700MPa、拉伸塑性大于6%;950℃,200小時的持久強度極限大于230MPa。這類合金適于用做航空發動機渦輪葉片、導向葉片及整鑄渦輪。

第三類:在950~1100℃使用的定向凝固柱晶和單晶高溫合金這類合金在此溫度范圍內具有優良的綜合性能和抗氧化、抗熱腐蝕性能。例如DD402單晶合金,1100℃、130MPa的應力下持久壽命大于100小時。這是國內使用溫度**的渦輪葉片材料,適用于制作新型高性能發動機的一級渦輪葉片。

隨著精密鑄造工藝技術的不斷提高,新的特殊工藝也不斷出現。細晶鑄造技術、定向凝固技術、復雜薄壁結構件的CA技術等都使鑄造高溫合金水平大大提高,應用范圍不斷提高。

760℃800MPa級高溫材料粉末冶金高溫合金

采用霧化高溫合金粉末,經熱等靜壓成型或熱等靜壓后再經鍛造成型的生產工藝制造出高溫合金粉末的產品。采用粉末冶金工藝,由于粉末顆粒細小,冷卻速度快,從而成分均勻,無宏觀偏析,而且晶粒細小,熱加工性能好,金屬利用率高,成本低,尤其是合金的屈服強度和疲勞性能有較大的提高。

FGH95粉末冶金高溫合金,650℃拉伸強度1500MPa;1034MPa應力下持久壽命大于50小時,是當前在650℃工作條件下強度水平**的一種盤件粉末冶金高溫合金。粉末冶金高溫合金可以滿足應力水平較高的發動機的使用要求,是高推重比發動機渦輪盤、壓氣機盤和渦輪擋板等高溫部件的選擇材料。

1200℃100MPa級高溫材料氧化物彌散強化(ODS)合金

是采用獨特的機械合金化(MA)工藝,超細的(小于50nm)在高溫下具有超穩定的氧化物彌散強化相均勻地分散于合金基體中,而形成的一種特殊的高溫合金。其合金強度在接近合金本身熔點的條件下仍可維持,具有優良的高溫蠕變性能、優越的高溫抗氧化性能、抗碳、硫腐蝕性能。

目前已實現商業化生產的主要有三種ODS合金:

MA956合金在氧化氣氛下使用溫度可達1350℃,居高溫合金抗氧化、抗碳、硫腐蝕之首位??捎糜诤娇瞻l動機燃燒室內襯。

MA754合金在氧化氣氛下使用溫度可達1250℃并保持相當高的高溫強度、耐中堿玻璃腐蝕?,F已用于制作航空發動機導向器蓖齒環和導向葉片。

MA6000合金在1100℃拉伸強度為222MPa、屈服強度為192MPa;1100℃,1000小時持久強度為127MPa,居高溫合金之首位,可用于航空發動機葉片。

金屬間化合物高溫材料

金屬間化合物高溫材料是近期研究開發的一類有重要應用前景的、輕比重高溫材料。十幾年來,對金屬間化合物的基礎性研究、合金設計、工藝流程的開發以及應用研究已經成熟,尤其在Ti-Al、Ni-Al和Fe-Al系材料的制備加工技術、韌化和強化、力學性能以及應用研究方面取得了令人矚目的成就。

Ti3Al基合金(TAC-1),TiAl基合金(TAC-2)以及Ti2AlNb基合金具有低密度(3.8~5.8g/cm3)、高溫高強度、高鋼度以及優異的抗氧化、抗蠕變等優點,可以使結構件減重35~50%。Ni3Al基合金,MX-246具有很好的耐腐蝕、耐磨損和耐氣蝕性能,展示出極好的應用前景。Fe3Al基合金具有良好的抗氧化耐磨蝕性能,在中溫(小于600℃)有較高強度,成本低,是一種可以部分取代不銹鋼的新材料。

環境高溫合金

在民用工業的很多領域,服役的構件材料都處于高溫的腐蝕環境中。為滿足市場需要,根據材料的使用環境,歸類出系列高溫合金。

1、高溫合金母合金系列

2、抗腐蝕高溫合金板、棒、絲、帶、管及鍛件

3、高強度、耐腐蝕高溫合金棒材、彈簧絲、焊絲、板、帶材、鍛件

4、耐玻璃腐蝕系列產品

5、環境耐蝕、硬表面耐磨高溫合金系列

6、特種精密鑄造零件(葉片、增壓渦輪、渦輪轉子、導向器、儀表接頭)

7、玻棉生產用離心器、高溫軸及輔件8、鋼坯加熱爐用鈷基合金耐熱墊塊和滑軌

9、閥門座圈

10、鑄造“U”形電阻帶

11、離心鑄管系列

12、納米材料系列產品

13、輕比重高溫結構材料

14、功能材料(膨脹合金、高溫高彈性合金、恒彈性合金系列)

15、生物醫學材料系列產品

16、電子工程用靶材系列產品

17、動力裝置噴嘴系列產品

18、司太立合金耐磨片

19、超高溫抗氧化腐蝕爐輥、輻射管。

提高強度

固溶強化

加入與基體金屬原子尺寸不同的元素(鉻、鎢、等)引起基體金屬點陣的畸變,加入能降低合金基體堆垛層錯能的元素(如鈷)和加入能減緩基體元素擴散速率的元素(鎢、鉬等),以強化基體。

沉淀強化

通過時效處理,從過飽和固溶體中析出第二相(γ’、γ"、碳化物等),以強化合金。γ‘相與基體相同,均為面心立方結構,點陣常數與基體相近,并與晶體共格,因此γ相在基體中能呈細小顆粒狀均勻析出,阻礙位錯運動,而產生顯著的強化作用。γ’相是A3B型金屬間化合物,A代表鎳、鈷,B代表、鈦、、鉭、、鎢,而鉻、鉬、鐵既可為A又可為B。鎳基合金中典型的γ‘相為Ni3(Al,Ti)。γ’相的強化效應可通過以下途徑得到加強:

①增加γ‘相的數量;

②使γ’相與基體有適宜的錯配度,以獲得共格畸變的強化效應;

③加入鈮、鉭等元素增大γ’相的反相疇界能,以提高其抵抗位錯切割的能

高溫合金高溫合金

力;

④加入鈷、鎢、鉬等元素提高γ‘相的強度。γ"相為體心四方結構,其組成為Ni3Nb。因γ"相與基體的錯配度較大,能引起較大程度的共格畸變,使合金獲得很高的屈服強度。但超過700℃,強化效應便明顯降低。鈷基高溫合金一般不含γ相,而用碳化物強化。

晶界強化

在高溫下,合金的晶界是薄弱環節,加入微量的硼、鋯和稀土元素可改善晶界強度。這是因為稀土元素能凈化晶界,硼、鋯原子能填充晶界空位,降低蠕變過程中晶界擴散速率,抑制晶界碳化物的集聚和促進晶界第二相球化。另外,鑄造合金中加適量的鉿,也能改善晶界的強度和塑性。還可通過熱處理在晶界形成鏈狀分布的碳化物或造成彎曲晶界,提高塑性和強度。

氧化物彌散強化

通過粉末冶金方法,在合金中加入高溫下仍保持穩定的細小氧化物,呈彌散分布狀


高溫合金

態,從而獲得顯著的強化效應。通常加入的氧化物有ThO2和Y2O3等。這些氧化物是通過阻礙位錯運動和穩定位錯亞結構等因素而使合金得到強化的。

分類

超耐熱合金典型組織是奧氏體基體,在基體上彌散分布這碳化物、金屬間化合物等強化相。高溫合金的主要元素有鉻、鈷、鋁、鈦、鎳、鉬、鎢等。合金元素起穩定的奧氏體基體組織,形成強化相,增加合金的抗氧化和抗腐蝕能力的作用。常用的高溫合金有鐵基、鎳基和鈷基3種。

鐵基超耐熱合金

鐵基高溫合金是奧氏體不銹鋼發展起來的,含有一定量的鉻和鎳等元素。它是中等溫度(600~800℃)條件下使用的重要材料,具有校核的中溫力學性能和良好的熱加工塑性,合金成分比較簡單,成本較低。主要用于制作航空發動機和工業燃氣輪機上渦輪盤,也可以制作導向葉片、渦輪葉片、燃燒室,以及其他承力件、緊固件等。另一用途是制作柴油機上的廢氣增壓渦輪。由于沉淀強化型鐵基合金的組織不夠穩定抗氧化性較差,高溫強度不足,因而鐵基合金不能在更高溫度條件下應用。

鎳基超耐熱合金

以鎳為基體(含量一般大于50%)、在650~1000℃范圍內具有較的強度和良好的抗氧化性、抗燃氣腐蝕能力的高溫合金。

鎳基合金是高溫合金中應用*廣、高溫強度**的一類合金。其主要原因,一是鎳基合金中可以溶解較多的合金元素,且能保持較好的穩定性;二是可以形成共格有序的A3B型金屬間化合物γ’-[Ni(Al,Ti)]相作為強化相,使合金的得到有效的強化,獲得比鐵基高溫合金和鈷基高溫合金更高的高溫強度 ;三是很含鉻的鎳基合金具有比鐵基高溫合金更好的抗氧化和抗燃氣腐蝕能力。鎳基合金含有十多種元素,其中Cr主要起抗氧化和抗腐蝕作用,其他元素主要起強化作用。根據它們的強化作用方式可以分為固溶強化合金和沉淀強化合金:固溶強化元素,如鎢、鉬、鈷、鉻、釩等;沉淀強化元素,如鋁、鈦、鈮和鉭;晶界強化元素,如硼、鋯、鎂和稀土元素等。

鈷基超耐熱合金

鈷基超耐熱合金是含鈷量40%~65%的奧氏體高溫合金,在730~1100℃下,具有一定的高溫強度、良好的抗熱腐蝕和抗氧化能力。用于制作工業燃氣輪機、艦船燃氣輪機的導向葉片等。鈷基合金的發展應考慮鈷的資源情況。鈷是一種重要的戰略資源,世界上大多數國家缺鈷,以至于鈷基合金的發展受到限制。

鈷基合金一般含鎳10%~22%,鉻20%~30%以及鎢、鉬、鉭和鈮等固溶強化和碳化物形成元素,含碳量很高,是一類以碳化物為主要強化相的高溫合金。鈷基合金的耐熱能力與固溶強化元素和碳化物形成元素含量多少有關。

制造工藝

不含或少含鋁、鈦的高溫合金,一般采用電弧爐或非真空感應爐冶煉。含鋁、鈦高的高溫合金如在大氣中熔煉時,元素燒損不易控制,氣體和夾雜物進入較多,所以應采用真空冶煉。為了進一步降低夾雜物的含量,改善夾雜物的分布狀態和鑄錠的結晶組織,可采用冶煉和二次重熔相結合的雙聯工藝。冶煉的主要手段有電弧爐、真空感應爐和非真空感應爐;重熔的主要手段有真空自耗爐和電渣爐。

固溶強化型合金和含、鈦低(鋁和鈦的總量約小于4.5%)的合金錠可采用鍛造開坯;含鋁、鈦高的合金一般要采用擠壓或軋制開坯,然后熱軋成材,有些產品需進一步冷軋或冷拔。直徑較大的合金錠或餅材需用水壓機或快鍛液壓機鍛造。

合金化程度較高、不易變形的合金,目前廣泛采用精密鑄造成型,例如鑄造渦輪葉片和導向葉片。為了減少或消除鑄造合金中垂直于應力軸的晶界和減少或消除疏松,近年來又發展出定向結晶工藝。這種工藝是在合金凝固過程中使晶粒沿一個結晶方向生長,以得到無橫向晶界的平行柱狀晶。實現定向結晶的首要工藝條件是在液相線和固相線之間建立并保持足夠大的軸向溫度梯度和良好的軸向散熱條件。此外,為了消除全部晶界,還需研究單晶葉片的制造工藝。

粉末冶金工藝,主要用以生產沉淀強化型和氧化物彌散強化型高溫合金。這種工藝可使一般不能變形的鑄造高溫合金獲得可塑性甚至超塑性。

綜合處理高溫合金的性能同合金的組織有密切關系,而組織是受金屬熱處理控制的。高溫合金一般需經過熱處理。沉淀強化型合金通常經過固溶處理和時效處理。固溶強化型合金只經過固溶處理。有些合金在時效處理前還要經過一兩次中間處理。固溶處理首先是為了使第二相溶入合金基體,以

高溫合金高溫合金

便在時效處理時使γ、碳化物(鈷基合金)等強化相均勻析出,其次是為了獲得適宜的晶粒度以保證高溫蠕變和持久性能。

固溶處理溫度一般為1040~1220℃。目前廣泛應用的合金,在時效處理前多經過1050~1100℃中間處理。中間處理的主要作用是在晶界析出碳化物和γ膜以改善晶界狀態,與此同時有的合金還析出一些顆粒較大的γ相與時效處理時析出的細小γ相形成合理搭配。時效處理的目的是使過飽和固溶體均勻析出γ相或碳化物(鈷基合金)以提高高溫強度,時效處理溫度一般為700~1000℃。

發展趨勢

高溫合金發展的趨勢是進一步提高合金的工作溫度和改善中溫或高溫下承受各種載荷的能力,延長合金壽命。就渦輪葉片材料而言,單晶葉片將進入實用階段,定向結晶葉片的綜合性能將得到改進。

此外,有可能采用激冷態合金粉末制造多層擴散連接的空心葉片,從而適應提高燃氣溫度的需要。就導向葉片和燃燒室材料而言,有可能使用氧化物彌散強化的合金,以大幅度提高使用溫度。為了提高抗腐蝕和耐磨蝕性能,合金的防護涂層材料和工藝也將獲得進一步發展。

技術開發

高梯度定向凝固共晶高溫合金的組織與性能

K4169高溫合金組織細化及性能優化研究

高溫合金高溫合金

鑄造鎳基高溫合金中Ni_5Zr的溶解和轉變

定向工藝和鉿含量對一種鎳基高溫合金的影響

Mg在高溫合金GH220中的作用

GH2027鐵基高溫合金的第二相研究

Ni_3Al基高溫合金添加碳化物質點的探索研究

MC和M_3B_2相在一種Ni-Cr-Co高溫合金中的析出

鎳基高溫合金GH4145/SQ的高溫低周疲勞行為

變形高溫合金成型質量控制中的轉換研究

高梯度定向凝固共晶高溫合金的組


織與性能

K4169高溫合金組織細化及性能優化研究

鑄造鎳基高溫合金中Ni_5Zr的溶解和轉變

定向工藝和鉿含量對一種鎳基高溫合金的影響

Mg在高溫合金GH220中的作用

FGH95粉末高溫合金應力時效的組織和相分析

Rene′88DT粉末高溫合金組織及γ′相析出動力學研究

鎳基粉末高溫合金中夾雜物導致裂紋萌生和擴展行為的研究

鎳基粉末高溫合金中夾雜物的微觀力學行為研究

粉末高溫合金的研究與發展

物質應用

高溫合金是指以鐵、鎳、鈷為基,能在600℃以上的高溫及一定應力作用下長期工作的一類金屬材料;并具有較高的高溫強度,良好的抗氧化和抗腐蝕性能,良好的疲勞性能、斷裂韌性等綜合性能。高溫合金為單一奧氏體組織,在各種溫度下具有良好的組織穩定性和使用可靠性,


基于上述性能特點,且高溫合金的合金化程度較高,又被稱為“超合金”,是廣泛應用于航空、航天、石油、化工、艦船的一種重要材料。按基體元素來分,高溫合金又分為鐵基、鎳基、鈷基等高溫合金。鐵基高溫合金使用溫度一般只能達到750~780℃,對于在更高溫度下使用的耐熱部件,則采用鎳基和難熔金屬為基的合金。 鎳基高溫合金在整個高溫合金領域占有特殊重要的地位,它廣泛地用來制造航空噴氣發動機、各種工業燃氣輪機*熱端部件。若以150MPA-100H持久強度為標準,而目前鎳合金所能承受的**溫度〉1100℃,而鎳合金約為950℃,鐵基的合金〈850℃,即鎳基合金相應地高出150℃至250℃左右。所以人們稱鎳合金為發動機的心臟。目前,在先進的發動機上,鎳合金已占總重量的一半,不僅渦輪葉片及燃燒室,而且渦輪盤甚至后幾級壓氣機葉片也開始使用鎳合金。與鐵合金相比,鎳合金的優點是:工作溫度較高,組織穩定、有害相少及抗氧化腐蝕能力大。與鈷合金相比,鎳合金能在較高溫度與應力下工作,尤其是在動葉片場合。

鎳合金具有上述優點與其本身的某些**性能有關。鎳為面心立方體,組織非常

穩定,從室溫到高溫不發生同素異型轉變;這對選作基體材料十分重要。眾所周知,奧氏體組織比鐵素體組織具有一系列的優點。

鎳具有高的化學穩定性,在500度以下幾乎不發生氧化,室溫下也不受溫氣、水及某些鹽類水溶液的作用。鎳在硫酸及鹽酸中溶解很慢,而在硝酸中溶解很快。

鎳具有很大的合金能力,甚至添加十余種合金元素也不出現有害相,這就為改善鎳的各種性能提供潛在的可能性。

純鎳的力學性能雖不強,但塑性卻極好,尤其是低溫下塑性變化不大。

鐵基變形高溫合**號

GH1015(GH15)

GH1016(GH16)

GH1035(GH35)

GH103**(GH3**)

GH1131(GH131)

GH1140(GH140)

GH2036(GH36)

GH2132(GH132)

GH2150(GH150)

GH2302(GH302)

GH2696(GH696)

GH761

GH903

GH907


鎳基變形高溫合**號

GH3030(GH30)

GH3039(GH39)

GH3044(GH44)

GH3128(GH128)

GH3536(GH536)

GH3625(GH625)

GH4033(GH33)

GH4037(GH37)

GH4049(GH49)

GH4133(GH4133B)

GH4169(GH169)

GH4220(GH220)

GH4698(GH698)

GH80A

GH90

GH93

GH105

GH141

GH145

GH163

GH170

GH500

GH600

GH652

GH706

GH710

GH738

GH742

GH901



暫無評論!
我要評論 只有購買過該商品的用戶才能評論。
  • 電話咨詢
  • 18121377875 13818714669
您是第 60340 位訪客!